

1

Maximising the utility of OpeNDAP datasets
through the NetCDF4 API

Stephen Pascoe (Stephen.Pascoe@stfc.ac.uk)

Chris Mattmann (chris.a.mattmann@jpl.nasa.gov)
Phil Kershaw (Philip.Kershaw@stfc.ac.uk)
Ag Stephens (Ag.Stephens@stfc.ac.uk)

mailto:Stephen.Pascoe@stfc.ac.uk
mailto:chris.a.mattmann@jpl.nasa.gov
mailto:Philip.Kershaw@stfc.ac.uk
mailto:Ag.Stephens@stfc.ac.uk

2

Opportunities for the
“NetCDF/OPeNDAP Platform”

H
ig

h-
Le

v e
l T

oo
ls

N
et

C
D

F
-A

P
I

Application

Script

Local Files

Remote Files

Virtual Datasets

Web App.

Remote Files

Virtual Datasets

E
S

G
F

 S
ec

ur
ity

OPeNDAP
Server

E
S

G
F

 S
ec

ur
ity

OPeNDAP
Server

W
A

N
LA

N

3

Key Questions

● What performance can a user expect today from high-
level interaction with OPeNDAP datasets through the
NetCDF API?

● Can OPeNDAP servers cope with these scenarios?
● How can we improve from where we are?

4

OpeNDAP Test Framework
http://github.com/stephenpascoe/dapbench

● Tools to intercept OPeNDAP requests from clients for analysis

● Load-testing framework for testing OPeNDAP servers

● Specific tests discussed here

● “pre-alpha” work in progress

http://github.com/stephenpascoe/dapbench

5

Test System

● DELL optiplex 980.
● Intel i5 4-cores @ 3.2GHz
● 1Gbps NIC
● NetCDF 4.1.2-beta2, HDF5-

1.8.4-patch1

● Xen Virtual Machine
● Host: DELL PowerEdge 2950 III

● 2x quad-core CPU, 24GB RAM
● Guest VM: Paravirtualised

OpenSuSE 11.0
● 2 CPU, 8GB RAM, 4GB swap

Measured Bandwidth: 930Mbps (iperf)

Client Server
LAN

Test Servers
● Hyrax: OLFS-1.7.1, bes-3.9.0, dap-server-4.1.0
● THREDDS Data Server: 3.17.3.1
● Pydap: 3.0.rc.15. netCDF4-python-0.9.3.

Platforms
● 64-bit Java SDK 1.6.0-13, Tomcat-6.0.20.

JAVA_OPTS=-Xms1000M -Xmn500M -Xmx1500M
● Apache-2.2.8 (prefork), mod_wsgi-3.3

6

Client Tests

Test Clients Test Dataset

● CDAT (cdat-lite 6.0-alpha-3)
● CDO 1.4.7

● 4D temperature field
● shape [120,4,144,192] time/level/lat/lon
● 51MB NetCDF file.

Test Requests

1. Take a 45ºx45º subset of entire field

2. Regrid entire field to 100x100 lat/lon resolution

7

Client Results

Test Tool DODS
Requests

Download Size Comment

Subset CDO 481 50Mb 1 + time*level requests

CDAT 17281 1.5Mb 1 + time*level*lat requests

Regrid CDO 481 50Mb 1 + time*level requests

CDAT 69121 50Mb 1 + time*level*lat requests

CDO downloads too much and with sub-optimal number of requests. CDAT
downloads just enough but with very sub-optimal number of requests. CDAT
iterates over all outer dimensions.

8

Server Tests

Test Requests

1. Request all of a random file in n slices, n = [15, 30, 60, 120, 240, 720, 1440]

2. Continuously reqest random subsets in m threads, m = [1, .. 20]

Test Framework Test Dataset

● Grinder load-testing framework
● NetCDF-Java API
● Python httplib2

● 30 files of 4D temperature field
● shape [120,4,144,192] time/level/lat/lon
● 600MB per NetCDF file.

9

Health Warning

Preliminary Results

These data may say as
much about the test
environment as the

servers tested

10

Server Test 1: ramp slices

0 200 400 600 800 1000 1200 1400 1600

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Time to download whole field

pydap
tds
hyrax

Requests

T
im

e
/

m
s

0 200 400 600 800 1000 1200 1400 1600

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Equivilent Bandwidth

pydap
tds
hyrax

Requests

M
B

/s

~360Mbps

11

Server Test 2: Parallel

12

Solutions

2 Ideas

13

How do we save
clients from themselves?

● What if clients were forced to
cache data themselves?

● What if the server only
responded to sensible sized
requests?

● What if we could restrict the
number of allowed requests and
cache them?

14

DAP Response tiling / chunking
WMS web-clients use tiling to improve

client & server performance

Browser

Tile Cache

Tiles

Server

WMS

Tiled WMS

Proxy Cache

Cache

15

REST Constraints

● Client-server: separation of concerns

● Stateless: no client-context stored on the server

● Cacheable: responses can be cached to improve
performance

● Layered: clients are unaware whether they are connected
directly to the end server

● Code on demand (optional): Servers can extend clients
with custom code

● Uniform Interface: generic interface between client and
server decouples them allowing independent evolution.

?








?

OPeNDAP

16

Big wins for caching
● If tiling/chunking could help standard OpeNDAP performance it

could hugely help server-side processing

● Consider

http://example.com/mydataset.nc.dods?zonalmean(tas)

● But not all server-side processing can be expressed as a URI
and complete synchronously . . .

http://example.com/mydataset.nc.dods?zonalmean(tas

17

Beyond Synchronous OPeNDAP

● We know we have to develop
server-side processing systems

● How do we keep them RESTful
and in the spirit of OPeNDAP?

● So that the outputs remain
reusable and cacheable

18

OODT Data Processing Architecture

C. Mattmann, D. Freeborn, D. Crichton, B. Foster, A. Hart, D.
Woollard, S. Hardman, P. Ramirez, S. Kelly, A. Y. Chang, C. E. Miller.
A Reusable Process Control System Framework for the Orbiting
Carbon Observatory and NPP Sounder PEATE missions. In
Proceedings of the 3rd IEEE Intl’ Conference on Space Mission
Challenges for Information Technology (SMC-IT 2009), pp. 165-172,
July 19 - 23, 2009.

19

WPS Process Workflow

● GET DescribeProcess
resource to discover process
arguments

● POST to create a process
execution resource (unique
URL)

● GET to poll status of process
execution

● Navigate to outputs when
available

20

Baby steps towards
WPS/OPeNDAP integration

WPS Outputs as OpeNDAP
Datasets

21

Is there a generic
lightweight pattern?

● A Standard way to say “Processing, Come back later”

● Where should the “process execution description”?

● Specific DAP response

● Containers, e.g. Catalogues

● Provenance responses

● Describing processes and executions is an extra step

22

Summary
● Clients and Servers need to improve to support efficient high-

level OPeNDAP access through the NetCDF API

● Benchmarking could help us find where we need to focus our
work

● Caching and server-side processing should be part of the
solution

● But keep it lightweight and RESTful

23

Thanks

Stephen.Pascoe@stfc.ac.uk

http://github.com/stephenpascoe/dapbench

mailto:Stephen.Pascoe@stfc.ac.uk
http://github.com/stephenpascoe/dapbench

24

25

TDS Pydap Hyrax

